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Abstract

TheSU,(2) algebra is extended by introducing additional raising and lowering
operators and constructing their coherent states. This new algebra of coherent
states and the commutation relations between the extended operators are
investigated and a resolution of unity is proposed.

PACS number: 03.65.w

1. Introduction

Theg-deformed harmonic oscillator is a useful tool for quantum field theory since it constitutes

a structure more compatible with interactions. The numpeviewed as a convergence
parameter can be used to regulate divergences appearing in field theory calculations. Therefore,
the deformed oscillator has been an active research topic over many years and several different
representations have been introduced [1-4]. The starting point is to introduce a deformation
of the commutation relation between the raising and lowering operators of the harmonic
oscillator. InSU,(2) normalization [5]

aa* — g%a*a = 1— ¢ O0<g <1l 1)

There are other ways also of deforming the commutator [6, 7] which can be brought
into this form by transformations of the operators. Equation (1) is the version that we will
be using for our purposes. This algebra has one discrete and one continuous spectrum. The
representation of the discrete spectrum is given by the set of basis viegteush that

a*|n) = In+ 1 ln +1) 2)

aln) =] ln = 1) (3)
with

[n] =1-¢* (4)
and the ground state

al0)=0 (5)
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so the statef:) are normalized eigenstates of the number opetétor

(l’l1|n2> = 5n1n2 (6)
a*a|n) = [n] |n) @
with
(a®)"
In) = |0) (8)
Vi
and
Jo=1112]---[n]. 9)
Coherent states are introduced as eigenstates of the ladder operators in the manner
o (.¢]
Zn (a*)n Zn
lz) = 10) = In) lzl <1 (10)
n; Ja =
such that
alz) =zlz) (11)
with the scalar product
(z1lz2) = G (z122) (12)
where
o )Cn
-1
(x) = 13
< (13)
This is easily veriﬁed usmg (10) and (6). Another important relation fo) G([8]
o
Gx)=]]a-¢%n (14)

from which it is easy to establish the formula
G® _ [
Jn I
Using the Jackson integral, the resolution of unity isintroduced as an integral over coherent
states lying on circles with radj” as

G@* ™) = (15)

_ 2,12
I= Dn (nl = —7= qz) L CE@ ) ) d,2z (16)
where
1. 2
dy2z = Sdgor” o (17)
and the Jackson integral is defined as
a (0.¢]
/0 FOdr =a—) Y ¢* Fgta. (18)
k=0

The normalization is chosen in order to ensure that
1
(m|1n) =8mn = ——— G(q®1z[%) (mlz) (zln) d,ez (19)
" a1-¢% M 7
where to evaluate the integral one uses
1
| 6@t = a-ads, (20)
0

which can be derived using (15).
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2. SU,4(2) algebra

Now let us review theSU,(2) formalism. It is worth remarking that the quantum group
approach has several advantages. The deformation of the oscillator is identical to the
g-deformation of the two-dimensional matrix representationSo6{2). ¢, viewed as a
convergence parameter, is useful in handling divergences appearing in interacting field theories.
As mentioned, there exists another spectrum for the deformed algebra which is not discrete. In
SU4(2) the identity is written as a sum of two positive definite terms which serves to discard this
continuous part of the spectrum. This is done by adding two new operators. This constitutes
the SU,(2) algebra with the following commutation relations:

ab = gba (21)

ab* = gb*a (22)

b*b = bb* (23)

[ =aa* + bb* = a*a+ q 2b*b. (24)
These specify the action of the new operators on the basis states as

bln) = g" "€ |n) (25)

b*In) = "€ |n) (26)

wherex is an arbitrary real parameter at this point. The action of the operators FUy{2)
algebra on the coherent states is

alz) =zlz) (27)
a*1z) = 77 X2) — lg%)) (28)
blz) = q€* Iqz) (29)
b*|z) = ge7 |qz) (30)
a*alz) = |z) — 1g%2) (31)
b*bz) = ¢%lq%2). (32)

To make the phase appearing in the action of the operatmdb* well-defined, we will
introduce two-parameter basis states and extend the algebra somewhat further.

3. Extension of the algebra to two-parameter states

Now the action of the operators of t§&/,(2) algebra on the coherent states suggests that we
can introduce two-parameter coherent states) to well-define the arbitrary phase in the
action ofb andb*. To do this we first consider states w) wherew = €*such that

bin, w) = q" w |n, w) (33)
" |n, w) . (34)
Now the parametew looks like a second coherent state label. We try to find a discrete

basis of the two-parameter states by expandinguttebel in a Fourier series. We introduce
the discrete set of orthonormal product statesz) which satisfies

b* In, w) = q

(n]_, m1|}’l2, m2> = 8n1n25m1m2 (35)
aln,m)=+/[n]In —1,m) (36)

a*|ln,m)=+/[n+1]In+1,m). (37)
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We first try the Fourier expansion

o0
n, w) = Z w™ |n, m) (38)
m=—00
so that action ob on these basis states is specified as
bln,m)=q¢"in,m—1) (39)
b*|n,m) =q" L n,m+1). (40)

As we can see, the operatérandb™* act as raising and lowering operators on the second
state label. The important difference between these states and the old onesits thisawed
to vary over negative integers as well. Now the main problem is that the definition (38) is
convergent only forw on the unit circle. Thus althoughwas introduced as a convergence
parameter we are once more confronted with an expression having convergence problems. To
make this expression convergent we will introduce a second deformation paramieténis
way, we extend the domain of the varialbeto the complex plane. Thus we define the new
stategn, w) using the product basis, m)as

°° 1
mowy= 3 w"p™E n.m) 0O<p<Ll (41)
m=—0oQ

Finally, we can now define the product coherent states) from the state$n, w) just

as we did before,

n

°° Zn i s Z m(m—1)
|z, w) = |n, w) = w"p 2 |n,m). (42)
,;) = 2 2 I

n=0m=—o0

The coherent states are defined for < 1 and for allw. The scalar product of the
coherent states becomes

P — o
(z1, w1lz2, w2) = M where P(x) = Z xmpm(m_l). (43)
G(z122) it
We remark that the functioA(x) is related to thé function
o
Oau, p)= Y pem (44)
n=—o0
by the following relation
1
P(x) =03 (—_ In f, p) . (45)
2t p

Now the action otz and & on the coherent states is as before and the actiéraods*
can be evaluated using (39) and (40) as

alz,w) =zlz, w) (46)

a* |z, w) = 27Xz, w) — g%z, w)) (47)

blz, w) = qw|qz, pw) (48)

b lzw) = g, E>. (49)
w P

We see now, however, that the additional deformation parampetgpears in these
actions which is not specified by the algebra. To correct this we exterfiA}{2) algebra by
introducing two new operatorsandd* such that the action af on the coherent states is just
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like @ but with the eigenvalue. Thusd is an operator that becomes a phase operator in the
limit p — 1 (w — €%).

dlz,w) = wlz, w) (50)
To satisfy this, the action af andd* on the basis statés, m) is defined as

dln,m) = pl_m [n,m—1) (52)

d*ln,m) = p*™" n,m+1). (52)

Now in addition to the existingU,(2) algebra (21)-(24), we have the commutation
relations

ad = da (53)
ad* = d*a (54)
db = pbd (55)
d*b = pbd* (56)
d*d = p’dd* (57)

which can be verified using the actions of these operators on the basigstaiesSo nowp
appears explicitly in the algebra as well. We can identifis a second deformation parameter
of the algebra after thg-deformation. Thus the coherent statesw) are deformed witly in

z and withp in w. The operatord andd* act on the coherent states according to

dlz, w) =wl|z, w) (58)

3
P, ?> (59)

d* |z, w) = —
w

4. Resolution of unity

Finally, we also write the resolution of unity as an integral over coherent states ihe
planes as we did before for the coherent statesSincew is not restricted to the unit disk

and is rather allowed to vary along the entire complex plane we need to generalize the Jackson
integral to the intervad0, co). This is easily done by defining

00 o0
| rwda=aa-p 3 srah. (60)
0 k=—00
It is easy to verify that this definition converges to the Riemann integral on the interval
(0, 00) in the limit p — 1. Herea is an arbitrary parameter and can be chosen as 1 as a
convention. Now we can write the resolution of unity over circles of ragftisn thez-plane
and over circles of radiysg” in the w-plane as

and the weight functiod (|w|?) is given by

Fay= — VP a3 (62)
71— p)S(Yp)

where

s =Y . (63)

k=—o00
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This normalization in (61) is chosen such that one has

Gq?1zI%)
(n1, mal I [n2, m2) = dpyn,6 :/ pgd 21)
nin2%mimz 2l<1 q T(1— qz)

X f dywF (w[?) (ny, malz, w) (2, winz, ma) (64)

The normalization of the-integration is as in (16) and to verify the normalization in the
w integration we make use of the formula

o0
/ xmpm(m_l)x—rl”,ﬁ—p)—% d,,x _ 1-p)SCYp) (65)
0 JpP
which can be evaluated using
> & mk —1 k(k_é) (m—1) . — @12 0 ke2m-1? 1
Z p pm pm(m p 172 zpmm p T Z p T ZTS(W) (66)
k=—00 k=—00 \/ﬁ

5. Conclusions

We have extended ti$#/,(2) algebra (21)—(24) by introducing the operatbanidd* (53)—(57)
and constructed two-parameter coherent states from the discrete produgt basisuch that
the coherent statgg, w) are eigenstates ef andd with eigenvalueg andw respectively.
In doing so we also introduced a second deformation varjabito the algebra and into the
definition of the coherent states. We have also written the resolution of unity as an integral
over concentric circles in the- andw-planes. It is worth remarking that if we look at the
commutation relations involving, a*, d andd* only, we find thatz anda* commute withd
andd* and satisfy similar commutation relations among themselves (1), (57). Thus the algebra
looks like the direct product of two distinct algebras, where the commutateraoid a* is
deformed with the parametgand the commutator efandd* is deformed with the parameter
p. However, the operatotsandb™ link these algebras together siricdoes not commute with
eithera or d. Furthermore, the parametgis explicit in the commutation relation between
andb (21) and the parametgris explicit in the commutation relation betweémandb (53).
We would also like to comment that one could replace the relation (57) with one which is

more similar to (1) like

d*d — p?dd* = 1— p? (67)
keeping the rest of the algebra and introduce another representation using discrete basis states
|n, m, k) such thata® anda act as raising and lowering operators mnb* and b act as
raising and lowering operators am andd andd* act as raising and lowering operators on
k. However, this representation is inconsistent with the extended algebra unless the parameter
p is a pure phase and this makes the construction of coherent states nonconvergentin such a
representation.
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